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a b s t r a c t

The aim of this study is to propose a strategy to implement a PAT system in the blending step of pharma-
ceutical production processes. It was examined whether Raman spectroscopy can be used as PAT tool for
the in-line and real-time endpoint monitoring and understanding of a powder blending process.

A screening design was used to identify and understand the significant effects of two process vari-
ables (blending speed and loading of the blender) and of a formulation variable (concentration of active
pharmaceutical ingredient (API): diltiazem hydrochloride) upon the required blending time (response
variable). Interactions between the variables were investigated as well. A Soft Independent Modelling
of Class Analogy (SIMCA) model was developed to determine the homogeneity of the blends in-line and
real-time using Raman spectroscopy in combination with a fiber optical immersion probe. One blending
experiment was monitored using Raman and NIR spectroscopy simultaneously. This was done to verify
whether two independent monitoring tools can confirm each other’s endpoint conclusions.

The analysis of the experimental design results showed that the measured endpoints were excessively
rounded due to the large measurement intervals relative to the first blending times. This resulted in effects
and critical effects which cannot be interpreted properly. To be able to study the effects properly, the ratio
between the blending times and the measurement intervals should be sufficiently high.

In this study, it anyway was demonstrated that Raman spectroscopy is a suitable PAT tool for the end-
point control of a powder blending process. Raman spectroscopy not only allowed in-line and real-time
monitoring of the blend homogeneity, but also helped to understand the process better in combination
with experimental design. Furthermore, the correctness of the Raman endpoint conclusions was demon-

strated for one process by using a second independent endpoint monitoring tool (NIR spectroscopy).
Hence, the use of two independent techniques for the control of one response variable not only means a
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. Introduction

The Food and Drug Administration’s (FDA) Process Ana-
ytical Technology (PAT) initiative (http://www.fda.gov/Cder/
PS/PAT.html) forms the basis of the pharmaceutical Good Man-

facturing Practice (GMP) rules for the 21st century [1–4]. By
eans of scientific, risk-based PAT frameworks, it is aimed to

esign and develop continuously controlled (by timely in-line, on-
ine or at-line measurements of the critical intermediate steps and
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ethods, but also provides a higher certainty in the determined endpoint.
© 2008 Elsevier B.V. All rights reserved.

ndpoints during the process), well understood and efficient pro-
esses that will consistently ensure a predefined quality at the
nd of the manufacturing process. Hence, PAT can be considered
s an unbreakable connection between the scientific domains of
nalytical chemistry and pharmaceutical technology. To fulfil the
AT objectives in a process, it is necessary to use an appropri-
te combination of PAT tools, such as chemometric tools, process
nalyzers, endpoint monitoring tools and knowledge management

ools.

Homogeneity of a powder blend is essential to guarantee the
orrect amounts of APIs and additives in every dosage unit at the
nd of several pharmaceutical production processes (production
f tablets, capsules, . . .). The importance of in-line and real-time

http://www.sciencedirect.com/science/journal/07317085
http://www.fda.gov/Cder/OPS/PAT.html
mailto:Thomas.DeBeer@UGent.be
dx.doi.org/10.1016/j.jpba.2008.07.023
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of water (15 C) through the jacket of the mixing bowl assured
a constant product temperature during all mixing experiments
since high shear mixing is known to increase product temperature
which would affect the intensity of the Raman bands significantly
[27].
T.R.M. De Beer et al. / Journal of Pharmaceu

ndpoint monitoring methods during blending processes with
espect to the classical sampling method using a thief probe
off-line after-process analysis), is well-documented in numerous
ublications [5–11]. Till now, especially the ability of spectro-
copic techniques (mostly NIR and, to a lesser extent, Raman
pectroscopy) for in-line and real-time powder blending endpoint
etermination is described [12,13]. However, the implementation
f a PAT system in a mixing process is not only involved with
ndpoint monitoring, but also with process understanding and
ptimizing process efficiency [14].

This study proposes a strategy to implement a PAT system in a
harmaceutical powder blending process. In a first instance, Raman
pectroscopy in combination with chemometric tools are examined
s PAT tools for the in-line and real-time endpoint determina-
ion of several different powder blending processes. The processes
ere determined according to an experimental design (see

urther). The powder mixture consisted of diltiazem hydrochlo-
ide (API), lactose DCL 21, Avicel PH 102 and silicium dioxide
additives).

We described earlier the ability and importance of quantitative
n-line monitoring during the homogenization process of an aque-
us pharmaceutical suspension [14]. Berntsson et al., El-Hagrasy
t al., Li et al. described several methods for the quantitative pro-
ess monitoring of blending processes using NIR [15–17]. However,
uantitative in-line monitoring was not aimed at in this study, as a
lending process is a closed process. Once the desired and controlled
mounts of powders are added to the blender, a homogeneous
owder blend will automatically consist of the correct component
roportions. Furthermore, several Raman and NIR spectroscopic
ethods for the fast (seconds) and non-destructive quantitative

nalysis of solids (tablets, capsules, . . .) are described [18,19].
hese methods can easily be implemented at the end of a pro-
uction process for immediate analysis, allowing real-time release
20–24].

In a second part of this study, the influence of two process
ariables (mixing speed and loading of the blender) and one for-
ulation variable (concentration of API) upon the time required

o obtain a homogeneous blend (response variable) was exam-
ned using experimental design (2-level full factorial design).
his allowed identifying significant effects of factors and factor
nteractions upon the response variable blending time (process
nderstanding). The results from the different design experiments

n which the blending endpoints (blending times) were determined
part 1 of this study), were used to estimate the effects. Within

PAT framework, a process endpoint is not a fixed time (repli-
ate processes do not result in unique endpoints); rather it is the
chievement of the desired material attribute. However, this does
ot mean that blending time is not to be considered. A range
f acceptable process times is likely to be achieved during the
anufacturing phase and should be evaluated. Considerations for

ddressing significant deviations from acceptable process times
hould be developed [25]. Once the effects of different process
nd formulation variables upon the endpoint are known, it is pos-
ible to select their optimum combination resulting in increased
rocess efficiency. Furthermore, it is possible to predict how the
rocess endpoint will be influenced by varying a certain fac-
or. The use of experimental design for process understanding of
lending or mixing processes is scarcely described in literature
14,26].

Finally, one blending process was monitored using simultane-

usly Raman and NIR spectroscopy to check if the two techniques
roposed the same process endpoints. Similar process endpoints
etermined by two independent monitoring techniques would
ignificantly increase the credibility and certainty of the process
nalysis conclusions.
d Biomedical Analysis 48 (2008) 772–779 773

. Materials and methods

.1. Materials

Diltiazem hydrochloride (API) was purchased from Roig Farma
Barcelona, Spain). Avicel PH 102, lactose DCL 21 and silicium diox-
de (additives) were obtained from FMC Europe (Little Island, Cork,
reland), De Melkindustrie (Veghel, The Netherlands) and Alpha
harma (Nazareth, Belgium), respectively.

.2. Process description

The blending experiments were performed in a GralTM 10 high
hear mixing system from GEA-Collette (Wommelgem, Belgium).
fter weighing the correct amounts, all powders were transferred

nto the blender, each time in the same order (Avicel PH 102, lactose
CL 21, diltiazem hydrochloride and silicium dioxide, respectively),

ollowed by the start of the blending process. For the in-line Raman
pectroscopic process monitoring, the jacketed bowl (10 L) was per-
orated to allow the introduction of a Raman probe (Fig. 1).

.3. Spectroscopic conditions

.3.1. Raman experiments
A RamanRxn1 spectrometer (Kaiser Optical Systems, Ann Arbor,

SA), equipped with an air-cooled CCD detector (back-illuminated
eep depletion design) was used in combination with a fiber optic

mmersion probe (length: 5 m) to monitor the homogenization
rocess in-line and non-invasively (Fig. 1). The laser wavelength
uring the experiments was the 785 nm line from a 785 nm Invic-
us NIR diode laser. All spectra were recorded at a resolution of
cm−1 using a laser power of 400 mW. Data collection and data

ransfer were automated using the HoloGRAMSTM data collection
oftware package, the HoloREACTTM reaction analysis and profiling
oftware package, the Matlab® software package (version 6.5), the
rams/AI—PLSplusIQ software package (version 7.02) and Excel®.
ive-second exposures were used for the in-line monitoring of the
ixing process. Spectra were collected every 10 s. The in-line spec-

ral data acquisition using the fiber optic probe was operated in a
on-stop mode, hence spectral information was continuously mon-

tored during the blending process. The Raman probe was always
ositioned in exactly the same way through a tailored-made hole

n the blender, the end of the probe (sapphire window) being
ushed with the inner wall of the mixing bowl. A constant flow

◦

Fig. 1. Experimental setup.
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Table 1
Overview of the studied variables and their levels

Variable Unit Levels

− +

Diltiazem·HCl concentration % (w/w) 9.5 21.0
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.3.2. Raman-NIR comparison experiment
One blending process was monitored using Raman and NIR

pectroscopy simultaneously. Therefore, an UltimaGralTM 75 high
hear mixing system from GEA-Collette (Wommelgem, Belgium)
as used. The Raman immersion probe was placed in a hole on

he side of the blender, while the NIR probe was positioned on
op of the blender. The blender was loaded with 25 kg powder
containing Avicel PH 102, lactose DCL, 21 and silicium dioxide;
ithout diltiazem·HCl) and a mixing speed of 90 rpm was used.
onitoring the same response variable (mixing time) by two inde-

endent process analyzers at different places in the blender clearly
ncreases the certainty of the endpoint conclusions. NIR spectra

ere obtained using a Multi-Purpose Analyzer FT-NIR spectrom-
ter (Bruker Optics, Belgium) in combination with a fiber optic
mmersion reflectance probe (Series 400 Diffuse Reflectance Probe
rom Precision Sensing Devices, Massachusetts, USA). The NIR spec-
rometer was equipped with an InGaAs detector and a tungsten
ight source. The NIR spectra were collected every 20 s with the
pus software 5.0 (Bruker Optics, Belgium). Each spectrum was

he average of 16 scans and the resolution was 8 cm−1 over the
ange from 12,500 to 4000 cm−1. The Raman measurement condi-
ions were identical to those specified higher (cfr. 2.3.1), except that
n exposure time of 15 s was used and spectra were collected every
0 s. Blending endpoint determination was based on the conformity

ndex (CI) method, as presented in Ref. [28]. As no diltiazem·HCl
as used for this experiment (too expensive), the developed SIMCA
odel to predict blend homogeneity for the pure Raman experi-
ents of Section 2.3.1 (cfr. 2.5) could not be applied.

.4. Experimental design methodology

The effects of one formulation variable (concentration of dil-
iazem hydrochloride) and two process variables (mixing speed
nd loading) and their interactions on the time required to obtain
homogeneous blend (response variable) were studied. These

ariables are known to influence the required blending times.
rom an industrial perspective, it is important to characterize the
ffect of concentration on mixing because a manufacturer’s prod-
ct line may frequently include products of different strengths.
urthermore, it was shown that similar mixtures with different
PI concentrations display different endpoints of mixing [26]. Typ-

cally, industrial scale blenders mix at a lower blending speed
ompared to lab-scale blenders. The question raised is whether the
ime required to achieve blend homogeneity at a slower speed is
quivalent to the one needed for mixing the same powder blend at
higher speed. Finally, it is evident that the amount of powder in
he blender (loading) can affect the required blending time. Table 1
rovides an overview of the variables (factors) with their lowest
nd highest levels.

A 2-level full factorial design was performed to determine the
nfluence of the factors upon the response within the design space.

s
o
s
t
[

able 2
verview of the performed experiments and obtained results

xperiment number Diltiazem·HCl concentration (%, w/w)

1 21
2 21
3 9.5
4 9.5
5 9.5
6 21
7 15.25
8 15.25
9 9.5

10 21
lending speed rpm 100 400
oading kg 2.5 3.0

n this design, 23 = 8 experiments are required. It was chosen to
erform 2 additional experiments at the center of the design space,
esulting in a total of 10 experiments (Table 2).

.5. In-line and real-time homogeneity determination

As the time required to obtain a homogeneous blend was the
esponse variable, a mathematical method that allows in-line and
eal-time homogeneity detection by extracting useful information
rom the spectral data was essential. In the literature, several meth-
ds have been described for this purpose. These methods can be
ivided into two types.

The first type does not use any historical measurements or infor-
ation: for instance, plotting the peak area(s) or height(s) of the

aman bands known to be produced by the compound of interest
s a function of blending time [29], the mean square of differences
MSD) method between two consecutive spectra [11,30,31], the

oving block standard deviation (MBSD) method [32–34], mul-
ivariate methods using dendrograms derived from hierarchical
luster analysis [35], score plots obtained from principal compo-
ent analysis (PCA) [36], etc. For these methods, it is assumed that,
nce the mixture is homogeneous, the spectra will not change any-
ore.
The second type of methods uses a training set of spectra

aken from one or more homogeneous mixtures. By compar-
ng each new measurement with the training set spectra via
issimilarities [33,34,36,37], PCA [34,36,37], partial least squares
PLS) [15], CI [28,38], Euclidean distance (ED), Mahalanobis
istance (MD) [29,38] or by using SIMCA models or Princi-
al Component-Modified Bootstrap Error-Adjusted Single-Sample
echnique (PC-MBEST) as pattern recognition techniques [39], it is
xamined when mixture homogeneity is reached. The ED and MD
ompare the distance of the observed spectra to the spectra that
omprise the model space. This model space is set when a training
et is established.

SIMCA was used in this study. SIMCA [40] is a very popular
upervised classification method. Since an object can belong to

ne, to any, or to several groups at the same time, it is called a
oft-classification method. The theory of SIMCA and some adapta-
ions to the original SIMCA method are discussed in several papers
40–45].

Blending speed (rpm) Loading (kg) Results (s)

400 3 140
100 3 70
100 3 100
400 3 50
400 2.5 50
100 2.5 70
250 2.75 60
250 2.75 60
100 2.5 90
400 2.5 50
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Fig. 2. Types of outlying objects when plotting the OD vs. the MD. The (- - -) lines
represent their cut-off values; I = high-residual objects; II = good leverage objects;
III = bad leverage objects.

Table 3
Number of Raman spectra for each batch (=each design experiment)

Batch Number of Raman spectra

1 45
2 35
3 48
4 46
5 51
6 74
7 61
8 33
9 57

10 56
T.R.M. De Beer et al. / Journal of Pharmaceu

After pre-processing, SIMCA builds PCA models for each group
or class) of objects individually. The model set X is divided into
ubgroups, Xk, with m objects of class K and n variables. For class
, the PCA model with f factors is obtained from singular value
ecomposition (SVD) of Xk after column centring.

k − Xk = Sk · Vk · DT
k = Sck · DT

k + Ek (1)

n each column, the matrix Xk contains the corresponding means
f the Xk columns, and the score matrix Sk the f normalized score
ectors. Vk is a diagonal matrix with singular values, Dk the matrix
ith f loadings, Sck the unnormalized score matrix of PC, contain-

ng f (unnormalized) score vectors, and Ek the matrix of residuals.
o determine the optimal number of components in PCA, a cross-
alidation procedure is applied [40–43,45].

Then, class boundaries are defined, using model objects for
ach class. This can be done in several ways [40–45]. In our
tudy, the scores of each object in a class are predicted using LOO
ross-validation, and these cross-validated scores are then used to
alculate the cut-off values. The MDs for the objects in the score
pace, describing the distances to the center of the PCA model,
nd the Orthogonal Distances (OD) from the PCA model, describing
he deviations to the model or the residuals, are calculated for all
bjects in the model set and used to determine their cut-off values.
or this purpose, the MD and OD distances (d) of the objects from
lass K are centered according to their corresponding means (mean
dK)), and the MD and OD cut-off values are defined as three times
he standard deviations of the corresponding vector elements [45].

d − mean (dK)
∣
∣ ≥ 3 · �(dK) (2)

n other words, when assuming a normal distribution, 99.90% of the
entered distances should fall within the interval of three times the
tandard deviations of these distances.

To verify whether a new test object belongs to class K, it is pro-
ected in the space defined by the selected factors (PC’s) of the
orresponding model set, Xk. Then, the MD and OD are calculated
or this object of the test set, and the distances are centered accord-
ng to the corresponding class means.

An object with centered MD and/or OD larger than the cor-
esponding cut-off value(s) is considered an outlier. Here, three
ituations are possible, which can be seen when plotting the OD
ersus the MD for each object (Fig. 2). The (- - -) lines on this plot
epresent their cut-off values. Objects situated in region I are called
igh residual objects or vertical outliers (high-residuals from PCA
odel, high OD), those in region II good leverage objects (far from
ajority of data, fit PCA model, high MD), and those in region III

ad leverage objects (both high MD and OD).

. Results and discussion

.1. In-line and real-time endpoint determination

In Table 3, the number of spectra for each batch (=each design
xperiment) is given. Raman spectra were collected every 10 s dur-
ng each blending experiment. The peak intensity as a function of
aman shift (cm−1) for the 506 Raman spectra of the 10 batches is
hown in Fig. 3.

The goal was to determine the time at which a blend is homoge-
eous. Therefore, the last seven spectra of each batch were chosen
s reference spectra, since these Raman spectra certainly origin

rom a homogeneous blend. In our study, only one class of objects is
sed. These last seven reference spectra from each batch constitute
he model set (70 spectra), and thus are used to build the SIMCA

odel and define the boundaries of this class. The other 436 spec-
ra are considered as test set, and it is verified whether they belong

Fig. 3. Peak intensity as a function of Raman shift (cm−1) for the 506 Raman spectra
of the 10 batches. The range of Raman shifts from 1554.6 till 1629.6 cm−1, is the
range in which most differences are found between the spectra of different batches.
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ig. 4. Offset corrected and normalized peak intensity as a function of the variable
umber for the 506 Raman spectra of the 10 batches.

o the class of reference spectra or, in other words, whether or not
he blend can be considered homogeneous.

Most differences between the spectra of different batches were
ound in the range of Raman shifts from 1554.6 till 1629.6 cm−1.
IMCA models were built using both the entire spectrum and only
his selected range of Raman shifts. Since a better model was
btained when using the entire spectrum, only these results are
iscussed below.

To pre-process the data, first an offset correction was applied,
ollowed by normalization of the spectra. Since negative peaks
ccur in the range 294.6 till 315.6 cm−1, the corresponding vari-
ble range was removed from the data. The spectra obtained after
he above preprocessing are shown in Fig. 4.

Then, the data were centered according to three classes, i.e.,
he three different API concentrations (9.5, 15.25 and 21% (w/w)
iltiazem·HCl concentration, see Table 2). The latter was neces-
ary, since otherwise, when performing PCA, different groups are

istinguished, depending on the API concentration.

Next, the 70 reference spectra were used to build a SIMCA
odel. Model complexity was determined by means of LOO cross-

alidation. In Fig. 5, the RMSECV is given as a function of the first

Fig. 5. RMSECV plotted as a function of the first 20 factors or PC’s.

v

a
1

F
s

Fig. 6. Eigenvalues plotted as a function of the first 20 factors or PC’s.

0 factors or PC’s. Optimal complexity was found when including
our factors. This is confirmed by Fig. 6, where the eigenvalues are
lotted as a function of the first 20 factors or PC’s.

The plot of the OD versus the MD for the 70 spectra of the
odel set is given in Fig. 7. The cut-off values for MD and OD

hen are calculated as MDmodel,centered ± 3 × standard deviations
nd ODmodel,centered ± 3 × standard deviations.

The calculated MD and OD for the 436 spectra of the test set
re represented in Fig. 8. The plot of the OD versus the MD for the
pectra of the test set is given in Fig. 9. On both figures, the cut-
ff values for both the OD and MD are represented by blue lines.
n Fig. 9, points representing spectra situated in region I are called
igh residual objects, those in region II good leverage objects, and
hose in region III bad leverage objects. It can be seen that at the
eginning of the blending time for each batch, the MD and OD are

arge (see Fig. 8), which on Fig. 9 represent points representing spec-
ra situated outside domain determined by the MD and OD cut-off

alues.

Finally, the Raman peak area (P; 1554.6–1629.6 cm−1) is plotted
s a function of blending time for each batch (Fig. 10; only batch
is shown). Outlying spectra, i.e., situated in regions I, II or III of

ig. 7. SIMCA: OD plotted as a function of the MD for the 70 spectra of the model
et.
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Fig. 8. SIMCA: OD and MD for the 436 spectra of the test set. The horizontal lines
represent the cut-off values.

Fig. 9. SIMCA: OD plotted as function of the MD for the 436 spectra of the test set.
The lines represent the cut-off values. I = high residual objects. II = good leverage
objects. III = bad leverage objects.

Fig. 10. Raman peak area (P) plotted as a function of blending time for batch 1
(experiment 1). Outlying spectra are shown with dots (regions I, II or III of Fig. 9).
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ig. 9, are shown with dots on Fig. 10. The time points at which
omogeneity is reached are included in Table 2.

.2. Screening design

From the experimental results (Table 2), a regression model
or the blending time was calculated (i.e., the effects and interac-
ions were estimated) by Statgraphics® Plus. Since two-level full
actorial designs take into account all linear terms, and all pos-
ible k way interactions, the number of different types of terms
an be predicted by the binomial theorem: k!/(k − m)!m! for mth-
rder interactions and k factors. As the third order interaction is
onsidered negligible, only second order (m = 2) interactions were
stimated [46,47]. Hence, the following equation was built:

= b0 + b1A + b2B + b3C + b12AB + b13AC + b23BC (3)

here A is the concentration of diltiazem (%, w/w), B the mixing
peed (rpm), C the loading (kg), b0, b1, b2, b3, b12, b13, b23 the regres-
ion coefficients, and y the response variable (required blending
ime in s).

The calculated model based on the experimental results is
= 74.0 + 5.0A − 5.0B + 12.5 C + 17.5AB + 10.0AC + 10.0BC.

For the calculation of this model, each factor was put on an equal
cale, with the highest level coded +1 and the lowest −1. The effects
f all variables (A, B, C) and variable interactions (AB, AC, BC) are the
ouble of their corresponding coefficients in the equation (i.e., A:
0, B: 10, C: 25, AB: 35, AC: 20 and BC: 20) [46].

Next, the significance of the effects (and hence the coefficients)
rom the factors (A, B, C) and interactions (AB, AC, BC) was examined
sing a standardized Pareto chart. A standardized Pareto chart is a
isualization of the Student’s t-test used to evaluate the effects sig-
ificance. Fig. 11 shows the standardized Pareto chart for ˛ = 0.05. It

ndicates each effect in decreasing order of magnitude. The length
f the bar is equal to the standardized effect, calculated as the
stimated effect divided by its standard error. The vertical line
n the plot is the critical t-value. Bars extending beyond the line
orrespond to effects that are statistically significant at the 95% con-
dence level. From Fig. 11, it is concluded that none of the factors
nd interactions have a significant influence on the response.

The standardized effects were calculated by dividing the effects
y its standard error sD.

D =
√

2s2
√

n
(4)

here n = number of factors or interactions

2

∑
(measured value − predicted value)2
=
remaining degrees of freedom

(5)

ence, sD was calculated on the basis of the residuals from the
alculated model, which means that the error estimate is depen-
ent from the complexity of the model. Including a third order

Fig. 11. Standardized Pareto chart for ˛ = 0.05.
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nteraction factor in the model would decrease the residuals (as
he fit increases) and hence also the sD, which is not logic. An effect
hould be considered as significant or non-significant in all sit-
ations. A good estimate of the error should always lead to the
ame conclusion. Therefore, adequate error estimates using dum-
ies, intermediate precision estimates or the Dong algorithm are

dvised [48]. However, evaluation of the significance of the effects
sing the Dong algorithm also indicated that none of the effects is
ignificant.

Both the Pareto chart and Dong’s approach seem to indicate
hat the uncontrollable random variation of the blending processes
ppears to be higher than the variation caused by the studied pro-
ess and formulation variables. In fact, the apparent finding that
his blending process endpoint is not significantly influenced by the
xamined factors in the experimental design forced us to consider
he possible reasons; process thinking and process understanding
eing two essential features of the PAT strategy.

However, the conclusion of non-significant effects drawn from
he statistical analyses should be approached with some cautious-
ess. As the effect from each parameter upon the response is
alculated by subtracting the average of the response values at
he low level of the considered parameter from the average of the
esponse values at the high level of the same parameter, the effects
rom A, B, C, AB, AC and BC are 10, −10, 25, 35, 20 and 20, respectively.
his means for the smallest estimated effect (e.g., effect A = 10) that
he blending time will change 10 s by altering factor A from −1
o 1. Hence, the response varies approximately 13% as the aver-
ge response of the design is 77.5 s. From a practical point of view
nd without considering any statistical result, such a change would
e considered relevant in many cases. A similar effect will only be
tatistically insignificant when there is a major variability in the
lending time of replicated experiments. This is not shown from our
tudy as the replicated experiments (7 and 8) resulted in an iden-
ical blending. However, we assume that this was by coincidence
s the measurement time intervals (10 s) are large with respect to

he short blending times (between 50 and 100 s) for all different
rocesses. We can state that to be able to estimate both effects and
ritical effects on t-values properly, the measurement time interval
hould be considerably smaller (e.g., 1 s). However, the instrumen-

ig. 12. (a) CI plot for NIR data: homogeneity is reached after about 300 s. (b) CI plot
or Raman data: homogeneity is reached after about 300 s.
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al limitations might make this impossible. The excessively rounded
lending times resulted in insensitive effect estimates from which
e consider it inappropriate to interpret them physcicochemically.

he above learns that the examination of increasing process effi-
iency is mainly relevant for processes having long process times
i.e., much longer than the possible measurement time intervals).
or the present study, where the process endpoints are reached
etween 1 and 2 min for all experiments, it is of higher impor-
ance to have a reliable method allowing the correct detection of
he process endpoint.

.3. Raman-NIR comparison experiment

The CI versus blending time plots for the Raman and NIR mea-
urements are given in Fig. 12(a and b).

The Raman and NIR measurements lead to similar endpoint
onclusions (blending time of 300 s). Hence, both independent
rocess-monitoring techniques confirm each other. This clearly

ncreases the credibility and certainty of the process analysis con-
lusions.

. Conclusion

A strategy is proposed to implement a PAT system in a pow-
er blending process, hence avoiding sampling errors and making
ime-consuming and labour intensive off-line analyses unneces-
ary. In a first instance, a Raman spectroscopic method based on
chemometric (SIMCA) model was developed that allows in-line

nd real-time monitoring of the endpoint (homogeneity) of the mix-
ng process. Important changes during the process can be detected
mmediately, hence the necessary adjustments can be undertaken,
f necessary, to avoid batch loss.

From an experimental design approach, the effects of process
nd formulation parameters upon the response can be studied,
hich makes it possible to understand the process better and to
ake the process as efficient as possible.
The correctness of the Raman endpoint conclusions can

e assured by using a second independent in-line endpoint-
onitoring tool (NIR spectroscopy) simultaneously. Equal process

ndpoint determinations provided by two independent monitor-
ng techniques clearly increase the credibility and certainty of the
rocess analysis conclusions.
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